Algebra Qualifying Exam August 29, 2008

Do all six problems. The exam is 50 points. A passing grade is $35 / 50$. No questions may be asked during the exam. If a problem appears ambiguous to you, interpret it in a way that makes sense to you but not in a way that makes it trivial.

1. (9 points)

Let $k \geq 1$ be an integer, and let p be an odd prime. Prove: No group of order $8 p^{k}$ is simple. (Note: If you use Burnside's Theorem, you should prove it. Alternately, if you use the Classification of Finite Simple Groups, you should prove it.)
2. (6 points)

Suppose that G is a group of order 12 and that P is a 3 -Sylow subgroup of G.
(a) Prove: If P is normal in G and $P=\langle x\rangle$, then $\left|C_{G}(x)\right| \geq 6$.
(b) Prove: If P is normal in G, then $Z(G)$ has an element of order 2.
(c) Prove: If $Z(G)$ has no element of order 2 , then $G \cong A_{4}$.

Recall that a ring R satisfies the maximal condition on ideals if every non-empty subset of ideals of R contains a maximal element with respect to inclusion.
3. (10 points)

Let R be an integral domain and write (a) for the principal ideal generated by $a \in R$. Recall that an element of R is said to be irreducible if it is nonzero, not a unit, and has no proper factorization.
i. Show that $(a) \subseteq(b)$ if and only if $b \mid a$, and that $(a)=(b)$ if and only if $b=a u$ for some unit $u \in R$. (2 points)
ii. If R is a $U F D$ (unique factorization domain), prove that the set of principal ideals of R satisfies the maximal condition. (4 points)
iii. If the set of principal ideals of R satisfies the maximal condition, show that every nonzero, nonunit element of R can be written as a finite product of irreducible elements. (4 points)
4. (5 points) Let F be a field and let $f(x)$ be an irreducible polynomial in $F[x]$. Show that if K is a Galois extension of F, then all irreducible factors of $f(x)$ in $K[x]$ have the same degree.
5. (5 points) Find the Galois group of $f(x)=x^{4}-x^{2}+1$ over \mathbb{Q}.
6. (15 points) Find the characteristic polynomial, the minimal polynomial, and the Jordan canonical form for the real matrix A, given below. Find a basis of \mathbb{R}^{3} relative to which A is in its Jordan canonical form.

$$
A=\left[\begin{array}{ccc}
2 & 6 & -15 \\
1 & 1 & -5 \\
1 & 2 & -6
\end{array}\right]
$$

