Algebra Qualifying Exam August 2010

Do all seven problems. The exam is 70 points. No questions may be asked during the exam. If a problem appears ambiguous to you, interpret it in a way that makes sense to you but not in a way that makes it trivial.

1. As usual, let S_{n} and A_{n} denote the symmetric group on n letters and the alternating group on n letters respectively. Z_{n} denotes the cyclic group of order n.
(a) How many elements are in the conjugacy class of (123) in S_{4} ? How many elements are in the conjugacy class of (123) in A_{4} ?
(b) Prove that A_{4} has no subgroups of order 6.
(c) Are the groups A_{4} and $Z_{2} \times S_{3}$ isomorphic? Explain why or why not.
2. Prove the following properties of a Principal Ideal Domain.
(a) Prove that any two nonzero elements of a P.I.D. have a least common multiple.
(b) Prove that a quotient of a P.I.D. by a prime ideal is again a P.I.D.
3. (a) Prove that if the Galois group of the splitting field of a cubic over \mathbb{Q} is the cyclic group of order 3, then all the roots of the cubic are real.
(b) By an example, show that the Galois group of the splitting field of a cubic over \mathbb{Q} can have order greater than 3 .
(c) By an example, show that the Galois group of the splitting field of a cubic over \mathbb{Q} can have order less than 3 .
4. Assume that k is a positive integer and G is a group of order $3^{k} \cdot 7$.
(a) Prove: If $k \leq 5$, then G has a normal subgroup of order 7 .
(b) Prove: If $k \geq 6$, then G has a normal subgroup H such that the order of H is divisible by 3^{k-2}.
5. Let I be an ideal of the commutative ring R. Define the radical of I to be

$$
\operatorname{rad} I:=\left\{r \in R \mid r^{m} \in I \text { for some } m \in \mathbb{Z}^{+}\right\} .
$$

(a) Prove that $\operatorname{rad} I$ is an ideal of R.
(b) An ideal I of R is called a radical ideal if $\operatorname{rad} I=I$. Prove that every prime ideal of R is a radical ideal.
(c) Let $n>1$ be an integer. Prove that 0 is a radical ideal in $\mathbb{Z} / n \mathbb{Z}$ if and only if n is a product of distinct primes to the first power (i.e. n is square free). Deduce that (n) is a radical ideal of \mathbb{Z} if and only if n is a product of distinct primes in \mathbb{Z}.
6. (a) Prove that $\mathbb{Q}[\sqrt{2}+\sqrt{5}]=\mathbb{Q}[\sqrt{2}, \sqrt{5}]$. Conclude that $[\mathbb{Q}(\sqrt{2}+\sqrt{5}): \mathbb{Q}]=4$.
(b) Find the minimal polynomial of $\sqrt{2}+\sqrt{5}$. You must verify that the polynomial is irreducible.
(c) Is $\mathbb{Q}[\sqrt{2}+\sqrt{5}]$ the splitting field of the polynomial you just found? Justify your answer if yes, or else find its splitting field.
7. Let G be a group and let $\operatorname{Aut}(G)$ denote the group of all automorphisms of G. A subgroup H of G is characteristic if $\sigma(H)=H$ for all $\sigma \in \operatorname{Aut}(G)$.
(a) Prove: If $G=H K$, where H and K are characteristic subgroups of G, and if $H \cap K=1$, then $\operatorname{Aut}(G) \cong \operatorname{Aut}(H) \times \operatorname{Aut}(K)$.
(b) Describe the automorphism group of $Z_{5} \times Z_{7}$. (Z_{n} denotes the cyclic group of order n.)

