Algebra Qualifying Exam August 26, 2011

Do all seven problems. The exam is 70 points. No questions may be asked during the exam. If a problem appears ambiguous to you, interpret it in a way that makes sense to you but not in a way that makes it trivial.

Notation: D_{2n} is the dihedral group of order 2*n*. S_n is the symmetric group on *n* elements. $n_p(G)$ is the number of Sylow *p*-subgroups of *G*. \mathbb{F}_q is a field consisting of *q* elements.

- 1. (10 points)
 - (a) Assume the following presentation for the dihedral group of order 8:

$$D_8 = \langle s, t | s^2 = t^4 = 1, sts^{-1} = t^3 \rangle.$$

Prove there exists a subgroup of S_4 that is isomorphic to D_8 .

- (b) By Part (a), we may identify D_8 as a subgroup of S_4 . Prove that the only element in D_8 that commutes with (123) is the identity element.
- 2. (10 points) For each of the following rings, determine if the designated set is an ideal of the given ring. Justify your answers.
 - (a) The set $\{(a, -a) | a \in \mathbb{Z}\}$ in the ring $\mathbb{Z} \times \mathbb{Z}$.
 - (b) The set of all polynomials whose constant term is a multiple of 3 in the ring $\mathbb{Z}[x]$.
 - (c) The set of all polynomials whose coefficient of x^2 is a multiple of 3 in the ring $\mathbb{Z}[x]$.
 - (d) The set of all nilpotent elements in $M_2(\mathbb{Z})$, where $M_2(\mathbb{Z})$ is the ring of all 2×2 matrices with entries in \mathbb{Z} . Recall that an element x is nilpotent if $x^n = 0$ for some positive integer n.
- 3. (10 points)
 - (a) Find the minimal polynomial m(x) of $\sqrt{2+\sqrt{2}}$ over \mathbb{Q} . (You must justify that the polynomial you find is irreducible to claim it is minimal.)
 - (b) Prove that the splitting field of m(x) over \mathbb{Q} is a cyclic extension; namely the Galois group of the extension field is cyclic.

- (c) Draw the lattice of subgroups of the Galois group of $\mathbb{Q}(m(x))$ and the lattice of their corresponding fixed fields.
- 4. (10 points) Let $k \ge 1$ be an integer. **Prove**: No group of order $2 \cdot 3 \cdot 5^k$ is simple. (**Note:** If you use the Classification of Finite Simple Groups, you should prove it.)
- 5. (10 points) Let $R = \mathbb{Z}[\sqrt{5}] = \{a+b\sqrt{-5} : a, b \in \mathbb{Z}\}$. Recall that $N(a+b\sqrt{-5}) = a^2+5b^2$ is a norm on R. Consider the ideal $I = (2, 1 + \sqrt{-5})$ in R.
 - (a) Prove that I is not a principal ideal. **Hint**: Suppose that $I = (\alpha)$. Prove that $N(\alpha) = 2$, and use this to get a contradiction.
 - (b) Prove that $I^2 = (2)$, so I^2 is a principal ideal.
- 6. (10 points)
 - (a) Is $\mathbb{F}_5[x]/(x^3+2x+1)$ a field? Explain why or why not.
 - (b) How many elements are in $\mathbb{F}_5[x]/(x^3+2x+1)$?
 - (c) Construct a finite field with 27 elements.
- 7. (10 points) Suppose that G is a simple group of order $90 = 2 \cdot 3^2 \cdot 5$.
 - (a) Prove that $n_5(G) = 6$. Deduce that if P is a Sylow 5-subgroup of G, then $|N_G(P)| = 15$, and G is isomorphic to a subgroup of S_6 .
 - (b) Explain why S_6 has 144 elements of order 5. Deduce that $n_5(S_6) = 36$. Use this to prove that if Q is a Sylow 5-subgroup of S_6 then $|N_{S_6}(Q)| = 20$.
 - (c) Explain why parts (a) and (b) contradict each other, and deduce that there are no simple groups of order 90.