Algebra Qualifying Exam, problem set

August 22, 2014

Do all seven problems. Each problem is ten points. No questions may be asked during the exam. If a problem appears ambiguous to you, interpret it in a way that makes sense to you but not in a way that makes it trivial.

1. Let G and H be subgroups of the permutation group S_{8}.
(a) Let G be the group generated by permutations $\sigma=(14253)(678)$ and $\tau=$ (12345). Determine the order of G, and whether or not G is a cyclic group. If G is a cyclic group, find a generator; if not, give a complete proof.
(b) Let H be the group generated by permutations $\eta=(12345)(67)$ and $\tau=$ (12345). Answer the same questions as in Part (a).
(c) Recall the Dihedral group $D_{10}=\left\langle r, s \mid r^{5}=s^{2}=1, r s r^{-1}=s\right\rangle$. We also know that D_{10} can be generated by $\beta=r s$ and r. Is H in Part (b) isomorphic to D_{10} ? If they are isomorphic, construct an isomorphism and justify your construction. If not, justify your conclusion.
2. Let G be a group. We recall the definition of the center $Z(G)$ of G :

$$
Z(G)=\{x \in G: x g=g x \text { for all } g \in G .\}
$$

(a) Prove that $Z(G)$ is a normal subgroup of G.
(b) Prove that if $G / Z(G)$ is cyclic, then G is Abelian.
(c) Assume the order of G is $p q$ where p and q are primes. Assume also that $Z(G)$ is a nontrivial subgroup of G. Prove that $Z(G)=G$.
3. Let k be a field, and let $R=k[x] /\left(x^{5}\right)$ be the quotient of the polynomial ring $k[x]$ in one variable by the principal ideal generated by x^{5}.
(a) Find all units in the ring R.
(b) Show that R has a unique maximal ideal.
4. Let $R=\mathbb{Z}[\sqrt{-13}]$.
(a) Show that 7 is irreducible in the ring R.
(b) Show that 7 is not a prime in the ring R.
(c) Give an example of an element of R which admits two different factorings into irreducibles.
5. Let $f(x)=x^{3}-2$. Find the Galois group of f
(a) over $K_{1}=\mathbb{Q}(\sqrt[3]{2})$.
(b) over $K_{2}=\mathbb{Q}(\sqrt{-3})$.
(c) over $K_{3}=\mathbb{Q}(\sqrt[3]{2}, \sqrt{-3})$.
6. (a) Prove that if G is a group and $|G|=2^{2} \cdot 5 \cdot 19$, then G has a normal Sylow p-subgroup for either $p=5$ or $p=19$.
(b) Let K be a Galois extension of \mathbb{Q}. Prove: If $[K: \mathbb{Q}]=2^{2} \cdot 5 \cdot 19$, then there exists some subfield E of K such that E is Galois over \mathbb{Q} and $[K: E]$ is prime.
7. Let $\alpha=\sqrt{3}+\sqrt{5}$.
(a) Prove that $\mathbb{Q}(\alpha)=\mathbb{Q}(\sqrt{3}, \sqrt{5})$.
(b) Show that $\mathbb{Q}(\alpha)$ is a Galois extension of \mathbb{Q} and find its Galois group.
(c) Find all subfields of the field $\mathbb{Q}(\alpha)$.

