Algebra Qualifying Exam August 2015

Do all seven problems. The exam is 70 points. No questions may be asked during the exam. If a problem appears ambiguous to you, interpret it in a way that makes sense to you but not in a way that makes it trivial.

- 1. Let R and S be commutative rings with 1. Suppose that I and J are ideals of R and S respectively. **Prove**: If $\psi : R \to S$ is an isomorphism with $\psi(I) = J$, then R/I is isomorphic to S/J.
- 2. Let R be a ring, not necessarily commutative. We say that R is Boolean if $a^2 = a$ for all $a \in R$.
 - (a) **Prove**: If R is Boolean, then 2x = 0 for all $x \in R$.
 - (b) **Prove**: Every Boolean ring is commutative.
 - (c) Find all Boolean rings that are integral domains.
- 3. (a) Assume that the group H has order p where p is a prime. Prove that every nonidentity element has order p.
 - (b) Let G be a group, and let H and K be subgroups of G of prime order p. Prove that either H = K or $H \cap K$ is the trivial subgroup $\{1\}$.
 - (c) How many elements of order 7 are there in a simple group of order 168?
- 4. (a) Show that there is a nonabelian subgroup T of $S_3 \times Z_4$ of order 12 generated by elements a, b such that |a| = 6, $a^3 = b^2$, $ba = a^{-1}b$.
 - (b) Prove that no two of D_{12} , A_4 and T are isomorphic, where T is as defined in Part (a). Note that D_{12} is the dihedral group of order 12.
- 5. (a) Show that a polynomial of degree 3 over a field is either irreducible or has a root in the field. Is $x^3 + 5x + 1$ irreducible over \mathbb{Q} ?
 - (b) Find the Galois group of $x^3 + 5x + 1$ over \mathbb{Q} .
- 6. Compute the Galois group of the splitting field of $x^4 2$ over \mathbb{Q} .

- 7. Suppose K is an extension of degree 7 over \mathbb{Q} . Let $f(x) \in \mathbb{Q}[x]$ be a polynomial with no repeated roots.
 - (a) Assume that all roots of f(x) are in K, but not all of the roots are in \mathbb{Q} . Prove that K is the splitting field of f(x).
 - (b) Give an explicit example to show that Part (a) is false if $[K : \mathbb{Q}] = 6$; instead of 7.