Algebra Qualifying Exam

August 2015

Do all seven problems. The exam is 70 points. No questions may be asked during the exam. If a problem appears ambiguous to you, interpret it in a way that makes sense to you but not in a way that makes it trivial.

1. Let R and S be commutative rings with 1 . Suppose that I and J are ideals of R and S respectively. Prove: If $\psi: R \rightarrow S$ is an isomorphism with $\psi(I)=J$, then R / I is isomorphic to S / J.
2. Let R be a ring, not necessarily commutative. We say that R is Boolean if $a^{2}=a$ for all $a \in R$.
(a) Prove: If R is Boolean, then $2 x=0$ for all $x \in R$.
(b) Prove: Every Boolean ring is commutative.
(c) Find all Boolean rings that are integral domains.
3. (a) Assume that the group H has order p where p is a prime. Prove that every nonidentity element has order p.
(b) Let G be a group, and let H and K be subgroups of G of prime order p. Prove that either $H=K$ or $H \cap K$ is the trivial subgroup $\{1\}$.
(c) How many elements of order 7 are there in a simple group of order 168 ?
4. (a) Show that there is a nonabelian subgroup T of $S_{3} \times Z_{4}$ of order 12 generated by elements a, b such that $|a|=6, a^{3}=b^{2}, b a=a^{-1} b$.
(b) Prove that no two of D_{12}, A_{4} and T are isomorphic, where T is as defined in Part (a). Note that D_{12} is the dihedral group of order 12.
5. (a) Show that a polynomial of degree 3 over a field is either irreducible or has a root in the field. Is $x^{3}+5 x+1$ irreducible over \mathbb{Q} ?
(b) Find the Galois group of $x^{3}+5 x+1$ over \mathbb{Q}.
6. Compute the Galois group of the splitting field of $x^{4}-2$ over \mathbb{Q}.
7. Suppose K is an extension of degree 7 over \mathbb{Q}. Let $f(x) \in \mathbb{Q}[x]$ be a polynomial with no repeated roots.
(a) Assume that all roots of $f(x)$ are in K, but not all of the roots are in \mathbb{Q}. Prove that K is the splitting field of $f(x)$.
(b) Give an explicit example to show that Part (a) is false if $[K: \mathbb{Q}]=6$; instead of 7.
