Algebra Qualifying Exam
 January 3, 2008

Do all six problems. The exam is 50 points. A passing grade is $35 / 50$.
No questions may be asked during the exam. If a problem appears ambiguous to you, interpret it in a way that makes sense to you but not in a way that makes it trivial.

1. (10 points)

Let $k \geq 1$ be an integer. Prove: No group of order $2^{k} \cdot 5$ is simple. (Note: If you use Burnside's Theorem, you should prove it. Alternately, if you use the Classification of Finite Simple Groups, you should prove it.)
2. (5 points)

Let F be a field and let $f(x) \in F[x]$ be an irreducible polynomial. Suppose that E is a splitting field for F and assume that there exists an element $\alpha \in E$ such that both α and $\alpha+1$ are roots of $f(x)$. Show that the characteristic of F is not zero.
3. (5 points)

Let X be a a subspace of $M_{n}(\mathbb{C})$, the \mathbb{C}-vector space of all $n \times n$ complex matrices. Assume that every nonzero matrix in X is invertible. Prove that $\operatorname{dim}_{\mathbb{C}} X \leq 1$.
4. (10 points)

Let V be a finite-dimensional vector space over an algebraically closed field F, and let S and T be commuting linear operators on V. Assume that the characteristic polynomial of S has distinct roots.
(a) (5 points) Prove: Every eigenvector of S is an eigenvector of T.
(b) (5 points) Prove: If T is nilpotent, then $T=0$.

5. (10 points)

Let \mathbb{Q} be the field of rational numbers, and let $f(x)=x^{8}+x^{4}+1$ be a polynomial in $\mathbb{Q}[x]$. Suppose F is a splitting field for $f(x)$ over \mathbb{Q} and set $G=$ Aut $_{\mathbb{Q}} F$.
(a) (5 points) Find $[F: \mathbb{Q}]$, and determine the Galois group G up to isomorphism.
(b) (5 points) If $\Omega \subseteq F$ is the set of roots of $f(x)$, find the number of orbits for the action of F on Ω.
6. (10 points)

Let M be a \mathbb{Z}-module; i.e., M is an abelian group. Suppose that

$$
0=M_{0} \subseteq M_{1} \subseteq \ldots \subseteq M_{n}=M
$$

is a chain of submodules such that, for $i=1,2, \ldots, n$, the factors M_{i} / M_{i-1} are simple and pairwise non-isomorphic.
Prove: If X and Y are isomorphic submodules of M, then $X=Y$.

