Algebra Qualifying Exam
 January 5, 2010

Do all seven problems. The exam is 70 points. No questions may be asked during the exam. If a problem appears ambiguous to you, interpret it in a way that makes sense to you but not in a way that makes it trivial.

1. Let G be a group of order $132=2^{2} \cdot 3 \cdot 11$. Prove that G has a normal p-Sylow subgroup for some prime p that divides 132 .
2. (a) Let S_{1} and S_{2} be commutative rings with 1. Consider the product ring $S_{1} \times S_{2}$ with binary operations defined componentwise. Prove that (a, b) is a unit in $S_{1} \times S_{2}$ if and only if a and b are units in S_{1} and S_{2} respectively.
(b) Let p be a prime in \mathbb{Z}. Assume d_{1} and d_{2} are positive integers and $d_{1}<d_{2}$. Consider the natural ring projection $\varphi: \mathbb{Z} / p^{d_{2}} \mathbb{Z} \rightarrow$ $\mathbb{Z} / p^{d_{1}} \mathbb{Z}$; that is for any $\bar{m} \in \mathbb{Z} / p^{d_{2}} \mathbb{Z}, \varphi(\bar{m}) \equiv m\left(\bmod p^{d_{1}}\right)$. Prove that if $\bar{m} \in\left(\mathbb{Z} / p^{d_{2}} \mathbb{Z}\right)^{\times}$, then $\varphi(\bar{m}) \in\left(\mathbb{Z} / p^{d_{1}} \mathbb{Z}\right)^{\times}$. Thus φ induces a well-defined group homomorphism $\eta:\left(\mathbb{Z} / p^{d_{2}} \mathbb{Z}\right)^{\times} \rightarrow\left(\mathbb{Z} / p^{d_{1}} \mathbb{Z}\right)^{\times}$.
(c) Prove that the induced homomorphism

$$
\eta:\left(\mathbb{Z} / p^{d_{2}} \mathbb{Z}\right)^{\times} \rightarrow\left(\mathbb{Z} / p^{d_{1}} \mathbb{Z}\right)^{\times}
$$

is surjective.
(d) Prove that the natural surjective ring projection $\mathbb{Z} / 500 \mathbb{Z} \rightarrow \mathbb{Z} / 25 \mathbb{Z}$ induces a surjective homomorphism on the group of units

$$
(\mathbb{Z} / 500 \mathbb{Z})^{\times} \rightarrow(\mathbb{Z} / 25 \mathbb{Z})^{\times}
$$

(Hint: Use the Chinese Remainder Theorem and the previous parts.)
3. Let G be a group, and let $Z(G)$ be the center of G.
(a) Let $a \in G$. An inner automorphism of G is a function of the form $\gamma_{a}: G \rightarrow G$ given by $\gamma_{a}(g)=a g a^{-1}$. Let $\operatorname{Inn}(G)$ be the set of all inner automorphisms of G. Prove: $\operatorname{Inn}(G) \cong G / Z(G)$.
(b) Let ϕ be an automorphism of S_{3}. Show that ϕ permutes the set $\{(12),(13),(23)\}$, and no non-trivial automorphism of S_{3} leaves all three elements of this set fixed. Deduce that all automorphisms of S_{3} are inner automorphisms.
4. The splitting field E of $x^{4}+1$ over \mathbb{Q} is a a simple extension. Find a primitive element for E and determine $\operatorname{Gal}(\mathrm{E} / \mathbb{Q})$.
5. Suppose that $q=p^{k}$ for some positive integer k and some prime p. Let \mathbb{F}_{q} denote the finite field with q elements.
(a) Prove that $x^{p^{k}}-x$ is a seperable polynomial over \mathbb{F}_{p}. Prove that every element of \mathbb{F}_{q} is a root of $x^{p^{k}}-x$.
(b) What is the isomorphism type of \mathbb{F}_{q}^{\times}as an abelian group? Explain.
(c) Prove that the equation $a^{3}=1$ has 3 solutions in \mathbb{F}_{q} if and only if $q \equiv 1(\bmod 3)$.
6. Let p be an odd prime, and consider the group $S_{2 p}$.
(a) Let H be a p-Sylow subgroup of $S_{2 p}$. Prove that H has order p^{2}, find the isomorphism type of H, and give generators for H.
(b) How many p-Sylow subgroups does $S_{2 p}$ have?
7. Let R be a commutative ring with 1 and let I and J be ideals of R. Assume also that neither I nor J is the zero ideal and that neither I nor J contains 1 . Let \mathfrak{p} be a prime ideal in R containing $I J$.
(a) Prove that \mathfrak{p} contains either I or J.
(b) If I and J are comaximal (i.e. $I+J=R$), then $I J$ is properly contained in \mathfrak{p}.

