Algebra Qualifying Exam January 5, 2010

Do all seven problems. The exam is 70 points. No questions may be asked during the exam. If a problem appears ambiguous to you, interpret it in a way that makes sense to you but not in a way that makes it trivial.

- 1. Let G be a group of order $132 = 2^2 \cdot 3 \cdot 11$. Prove that G has a normal p-Sylow subgroup for some prime p that divides 132.
- (a) Let S₁ and S₂ be commutative rings with 1. Consider the product ring S₁×S₂ with binary operations defined componentwise. Prove that (a, b) is a unit in S₁ × S₂ if and only if a and b are units in S₁ and S₂ respectively.
 - (b) Let p be a prime in \mathbb{Z} . Assume d_1 and d_2 are positive integers and $d_1 < d_2$. Consider the natural ring projection $\varphi : \mathbb{Z}/p^{d_2}\mathbb{Z} \to \mathbb{Z}/p^{d_1}\mathbb{Z}$; that is for any $\overline{m} \in \mathbb{Z}/p^{d_2}\mathbb{Z}$, $\varphi(\overline{m}) \equiv m \pmod{p^{d_1}}$. Prove that if $\overline{m} \in (\mathbb{Z}/p^{d_2}\mathbb{Z})^{\times}$, then $\varphi(\overline{m}) \in (\mathbb{Z}/p^{d_1}\mathbb{Z})^{\times}$. Thus φ induces a well-defined group homomorphism $\eta : (\mathbb{Z}/p^{d_2}\mathbb{Z})^{\times} \to (\mathbb{Z}/p^{d_1}\mathbb{Z})^{\times}$.
 - (c) Prove that the induced homomorphism

$$\eta: (\mathbb{Z}/p^{d_2}\mathbb{Z})^{\times} \to (\mathbb{Z}/p^{d_1}\mathbb{Z})^{\times}$$

is surjective.

(d) Prove that the natural surjective ring projection $\mathbb{Z}/500\mathbb{Z} \to \mathbb{Z}/25\mathbb{Z}$ induces a surjective homomorphism on the group of units

$$(\mathbb{Z}/500\mathbb{Z})^{\times} \to (\mathbb{Z}/25\mathbb{Z})^{\times}.$$

(*Hint*: Use the Chinese Remainder Theorem and the previous parts.)

- 3. Let G be a group, and let Z(G) be the center of G.
 - (a) Let $a \in G$. An *inner automorphism* of G is a function of the form $\gamma_a : G \to G$ given by $\gamma_a(g) = aga^{-1}$. Let Inn(G) be the set of all inner automorphisms of G. **Prove**: $\text{Inn}(G) \cong G/Z(G)$.
 - (b) Let ϕ be an automorphism of S_3 . Show that ϕ permutes the set $\{(12), (13), (23)\}$, and no non-trivial automorphism of S_3 leaves all three elements of this set fixed. Deduce that all automorphisms of S_3 are inner automorphisms.
- 4. The splitting field E of $x^4 + 1$ over \mathbb{Q} is a simple extension. Find a primitive element for E and determine $\operatorname{Gal}(E/\mathbb{Q})$.
- 5. Suppose that $q = p^k$ for some positive integer k and some prime p. Let \mathbb{F}_q denote the finite field with q elements.
 - (a) Prove that $x^{p^k} x$ is a seperable polynomial over \mathbb{F}_p . Prove that every element of \mathbb{F}_q is a root of $x^{p^k} x$.
 - (b) What is the isomorphism type of \mathbb{F}_{q}^{\times} as an abelian group? Explain.
 - (c) Prove that the equation $a^3 = 1$ has 3 solutions in \mathbb{F}_q if and only if $q \equiv 1 \pmod{3}$.
- 6. Let p be an odd prime, and consider the group S_{2p} .
 - (a) Let H be a p-Sylow subgroup of S_{2p} . Prove that H has order p^2 , find the isomorphism type of H, and give generators for H.
 - (b) How many *p*-Sylow subgroups does S_{2p} have?
- 7. Let R be a commutative ring with 1 and let I and J be ideals of R. Assume also that neither I nor J is the zero ideal and that neither I nor J contains 1. Let \mathfrak{p} be a prime ideal in R containing IJ.
 - (a) Prove that \mathfrak{p} contains either I or J.
 - (b) If I and J are comaximal (*i.e.* I + J = R), then IJ is properly contained in **p**.