Algebra Qualifying Exam January 7, 2014

Do all seven problems. Each problem is worth 10 points. No questions may be asked during the exam. If a problem appears ambiguous to you, interpret it in a way that makes sense to you but not in a way that makes it trivial.

- 1. Let k be a positive integer. **Prove**: No group of order $2^2 \cdot 5 \cdot 19^k$ is simple. (Note: If you use the Classification of Finite Simple Groups, you should prove it.)
- 2. Let \mathbb{F}_3 be the finite field with 3 elements.
 - (a) Show that the quotient ring $K = \mathbb{F}_3[x]/(x^2+1)$ is a finite field with 9 elements.
 - (b) Show that the map $\phi: K \to K$, $\phi(z) = z^3$ is an automorphism of K, and find all other automorphisms of the field K.
 - (c) By explicitly giving a generator, show that K^{\times} is a cyclic group.
- 3. Let B be a commutative ring and A a subring of B (so that $1 \in A$). An element x of B is said to be *integral* over A if x satisfies an equation of the form

$$x^{n} + a_{1}x^{n-1} + \dots + a_{n} = 0$$

where the a_i are elements of A. You may assume that the set C of elements of B which are integral over A is a subring of B containing A. We say that B is *integral* over A if C = B. Suppose that B is integral over A.

- (a) Let \mathfrak{b} be an ideal of B and $\mathfrak{a} = A \cap \mathfrak{b}$. Prove that B/\mathfrak{b} is integral over A/\mathfrak{a} .
- (b) Prove that the field of fractions of B is integral over the field of fractions of A.
- (c) Suppose further that $A \subseteq B$ are integral domains. Prove that B is a field if and only if A is a field.
- (d) Let \mathfrak{q} be a prime ideal of B and let $\mathfrak{p} = \mathfrak{q} \cap A$. Prove that \mathfrak{q} is maximal if and only if \mathfrak{p} is maximal.

- 4. Let k be a positive integer.
 - (a) Prove that if $k \ge 2$, then $(2^{k-1}+1)^2 \equiv 1 \pmod{2^k}$.
 - (b) Determine, with proof, the set of all positive integers k such that $(\mathbb{Z}/2^k\mathbb{Z})^{\times}$ is cyclic.
- 5. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible cubic polynomial, and let K be a splitting field of f(x) over \mathbb{Q} . Suppose that the Galois group $\operatorname{Aut}(K/\mathbb{Q})$ is of order 3.
 - (a) Show that K is isomorphic to $\mathbb{Q}[x]/(f(x))$.
 - (b) Show that K is isomorphic to a subfield of the field of real numbers.
- 6. Let G be a group. Recall that if $h, k \in G$, then the *commutator* of h and k is defined as $[h, k] = hkh^{-1}k^{-1}$. The commutator subgroup of G is

$$G' = \langle [h,k] : h,k \in G \rangle.$$

- (a) **Prove**: G' is a characteristic subgroup of G.
- (b) **Prove**: If $n \ge 5$ and $G = S_n$, then $G' = A_n$.
- 7. Prove that $\mathbb{Q}[x,y]/(y^2-x^3)$ is isomorphic to the ring $\mathbb{Q}[t^2,t^3]$.