Algebra Qualifying Exam January 7, 2014

Do all seven problems. Each problem is worth 10 points. No questions may be asked during the exam. If a problem appears ambiguous to you, interpret it in a way that makes sense to you but not in a way that makes it trivial.

1. Let k be a positive integer. Prove: No group of order $2^{2} \cdot 5 \cdot 19^{k}$ is simple. (Note: If you use the Classification of Finite Simple Groups, you should prove it.)
2. Let \mathbb{F}_{3} be the finite field with 3 elements.
(a) Show that the quotient ring $K=\mathbb{F}_{3}[x] /\left(x^{2}+1\right)$ is a finite field with 9 elements.
(b) Show that the map $\phi: K \rightarrow K, \phi(z)=z^{3}$ is an automorphism of K, and find all other automorphisms of the field K.
(c) By explicitly giving a generator, show that K^{\times}is a cyclic group.
3. Let B be a commutative ring and A a subring of B (so that $1 \in A$). An element x of B is said to be integral over A if x satisfies an equation of the form

$$
x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=0
$$

where the a_{i} are elements of A. You may assume that the set C of elements of B which are integral over A is a subring of B containing A. We say that B is integral over A if $C=B$. Suppose that B is integral over A.
(a) Let \mathfrak{b} be an ideal of B and $\mathfrak{a}=A \cap \mathfrak{b}$. Prove that B / \mathfrak{b} is integral over A / \mathfrak{a}.
(b) Prove that the field of fractions of B is integral over the field of fractions of A.
(c) Suppose further that $A \subseteq B$ are integral domains. Prove that B is a field if and only if A is a field.
(d) Let \mathfrak{q} be a prime ideal of B and let $\mathfrak{p}=\mathfrak{q} \cap A$. Prove that \mathfrak{q} is maximal if and only if \mathfrak{p} is maximal.
4. Let k be a positive integer.
(a) Prove that if $k \geq 2$, then $\left(2^{k-1}+1\right)^{2} \equiv 1\left(\bmod 2^{k}\right)$.
(b) Determine, with proof, the set of all positive integers k such that $\left(\mathbb{Z} / 2^{k} \mathbb{Z}\right)^{\times}$is cyclic.
5. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible cubic polynomial, and let K be a splitting field of $f(x)$ over \mathbb{Q}. Suppose that the Galois group $\operatorname{Aut}(K / \mathbb{Q})$ is of order 3.
(a) Show that K is isomorphic to $\mathbb{Q}[x] /(f(x))$.
(b) Show that K is isomorphic to a subfield of the field of real numbers.
6. Let G be a group. Recall that if $h, k \in G$, then the commutator of h and k is defined as $[h, k]=h k h^{-1} k^{-1}$. The commutator subgroup of G is

$$
G^{\prime}=\langle[h, k]: h, k \in G\rangle .
$$

(a) Prove: G^{\prime} is a characteristic subgroup of G.
(b) Prove: If $n \geq 5$ and $G=S_{n}$, then $G^{\prime}=A_{n}$.
7. Prove that $\mathbb{Q}[x, y] /\left(y^{2}-x^{3}\right)$ is isomorphic to the ring $\mathbb{Q}\left[t^{2}, t^{3}\right]$.

