Algebra Qualifying Examination

January 7, 2015

Do all seven (7) problems. Each problem is 10 points. No questions may be asked during the exam. If a problem appears ambiguous to you, interpret it in a way that makes sense to you but not in a way that makes it trivial.

Notation. Throughout the test, we use the following notation:
\mathbf{Z} is the ring of integers.
\mathbf{Q} is the field of rational numbers.
S_{n} is the permutation group on n elements.
(1) Let G be a group. The commutator subgroup of G is the group

$$
G^{\prime}=\left\langle x y x^{-1} y^{-1}: x, y \in G\right\rangle .
$$

Prove each of the following statements.
(a) The set G^{\prime} is a normal subgroup of G.
(b) If N is a normal subgroup of G and G / N is abelian, then G^{\prime} is a subgroup of N.
(c) If H is a subgroup of G and $G^{\prime} \subseteq H$, then H is normal in G.
(d) If $n \geq 3$. then the commutator subgroup of S_{n} is its alternating group A_{n}.
(2) Let $k \geq 1$ be an integer. Prove that if G is a group of order $2^{2} \cdot 3 \cdot 11^{k}$, then G is not simple.
(3) Give examples of each of the following. Be sure you justify your assertions.
(a) A ring R and an ideal \mathfrak{a} in R which is not principal.
(b) A ring S and a nonzero ideal \mathfrak{p} in S which is prime but not maximal.
(c) An integral domain which is not a UFD, and give an explicit example of nonunique factorization.
(d) A polynomial in $\mathbf{Q}[X]$ which is irreducible but not Eisenstein at any prime $p \in \mathbf{Z}$.
(4) (a) Define a Euclidean domain.
(b) Show that $F[X]$ is Euclidean, where F is a field. (If you wish to cite the Euclidean Algorithm Theorem, then you must prove it.)
(5) (a) Decompose the polynomial $f(X)=X^{4}-9 X^{2}+14$ into a product of irreducibles in $\mathbf{Q}[X]$. Be sure to prove that your irreducible factors are indeed irreducible.
(b) Compute the splitting field K of $f(X)$ over \mathbf{Q}.
(c) Compute $\operatorname{Gal}(K / \mathbf{Q})$.
(d) Use Galois theory to prove that the polynomial $X^{4}-18 X^{2}+25$ is irreducible.
(6) (a) Let \mathbf{F}_{2} be the field with 2 elements. Define the field of rational functions in the indeterminate T over \mathbf{F}_{2} by

$$
L=\mathbf{F}_{2}(T)=\left\{\frac{f(T)}{g(T)}: f(T), g(T) \in \mathbf{F}_{2}[T], g(a) \neq 0 \text { for some } a \in \mathbf{F}_{2}\right\}
$$

Prove that $L(\sqrt{T})$ is a finite extension of L of degree 2 but is not a Galois extension.
(b) State and prove necessary and sufficient conditions for $\mathbf{Q}\left(\sqrt{d_{1}}\right)$ and $\mathbf{Q}\left(\sqrt{d_{2}}\right)$ to be isomorphic as field extensions of \mathbf{Q}, where d_{1} and d_{2} are squarefree in \mathbf{Q}.
(7) Let $K=\mathbf{Q}(\sqrt[3]{2}+\omega)$ be a field extension of \mathbf{Q} where ω is a root of $X^{2}+X+1$.
(a) Prove that $\sqrt[3]{2} \in K$. Deduce that $K=\mathbf{Q}(\sqrt[3]{2}, \omega)$.
(b) Prove that $\operatorname{Gal}(K / \mathbf{Q}) \cong S_{3}$.
(c) Display the lattice of subgroups of S_{3}. For each subgroup, find a set of corresponding generators in $\operatorname{Gal}(K / \mathbf{Q})$.
(d) For each nontrivial proper subgroup of $\operatorname{Gal}(K / \mathbf{Q})$, find its fixed field.

