Algebra Qualifying Exam January 6, 2017

Do all seven problems. The exam is 70 points. No questions may be asked during the exam. If a problem appears ambiguous to you, interpret it in a way that makes sense to you but not in a way that makes it trivial.

1. Consider S_{4}, the permutation group on 4 symbols.
(a) Prove: S_{4} does not have a normal subgroup of order 3 .
(b) Assume that H is a normal subgroup of S_{4} of order 8 .

Prove: $\left\{\sigma \in S_{4}: \sigma^{-1}=\sigma\right\} \subseteq H$.
(c) Prove: S_{4} does not have a normal subgroup of order 8 .
2. Suppose that r is a positive integer and $2^{r}-1$ is prime.

Prove: There are no simple groups of order $2^{r}\left(2^{r}-1\right)$.
3. (a) Let R be an integral domain and let P be a prime ideal of R. Let

$$
f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in R[x],
$$

where $n \geq 1$. Assume that $a_{0}, a_{1}, \ldots, a_{n-1} \in P$ and $a_{0} \notin P^{2}$. Prove: $f(x)$ is irreducible in $R[x]$.
(b) Prove: The polynomial in two variables $x^{2}+y^{2}-1$ is irreducible over \mathbb{Q}.
4. Let $f(x)=x^{4}+a x^{2}+b \in \mathbb{Z}[x]$ be irreducible. Let G be the Galois group of $f(x)$ Note that f is an even function, so we may write the roots of f as $\alpha, \beta,-\alpha,-\beta$.
Prove: If $\alpha \beta \in \mathbb{Q}$, then G is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
5. Let $\zeta=e^{2 \pi i / 5}$.
(a) Prove: There exists a unique quadratic subfield of $L \subset \mathbb{Q}(\zeta)$. (L is quadratic if and only if $[L: \mathbb{Q}]=2$.)
(b) Let L be as in part (a). Prove: $L=\mathbb{Q}\left(\zeta+\zeta^{-1}\right)$.
(c) Let $\alpha=\zeta+\zeta^{-1}$. Prove: $\alpha^{2}+\alpha-1=0$. Deduce that $L=\mathbb{Q}(\sqrt{5})$.
6. (a) Give an example of a principal ideal domain R such that $R[x]$ is not a principal ideal domain. Justify your answer.
(b) Let R be a commutative ring with 1 and let N be a free R-submodule of R. Prove: Rank $N \leq 1$.
(c) Give an example of a free module M and its submodule N over a commutative ring R such that N is not free. Justify your answer.
7. Let M be a module over a ring R. Recall that the annihilator of M over R is the ideal

$$
\operatorname{Ann}_{R}(M)=\{r \in R: r M=0\} .
$$

(a) Suppose that M is a module over a principal ideal domain R and $\operatorname{Ann}_{R}(M)=(c)$ for some $c \in R$ such that $c=a b$, where $a, b \in R$ and $\operatorname{gcd}(a, b)=1$.
Prove: $M=M_{a} \oplus M_{b}$. where

$$
M_{a}=\{m \in M: a m=0\} \text { and } M_{b}=\{m \in M: b m=0\} .
$$

(b) Let V be a finite dimensional vector space over a field F. Let $T: V \rightarrow V$ be a linear transformation with the minimal polynomial $f(x) \in F[x]$.
Prove: $\operatorname{Ann}_{F[x]}(V)=(f(x))$.
(c) Let V be a finite dimensional vector space over \mathbb{Q}, and let $T: V \rightarrow V$ be a linear transformation with the minimal polynomial $f(x)=x^{4}-x^{3}-x+1$.
Prove: $V=U \oplus W$ where

$$
U=\left\{v \in V: T^{2}(v)=2 T(v)-v\right\} \text { and } W=\left\{v \in V: T^{2}(v)=-T(v)-v\right\} .
$$

