Analysis Qualifying Exam
 August 22, 2019

MTH 632: Provide complete solutions to only 5 of the 6 problems.

1. Let $m^{*}(A)$ denote the outer measure of $A \subset \mathbb{R}$. Prove or disprove: If $A \subset B \subset[0,1]$, then $m^{*}(B-A)=m^{*}(B)-m^{*}(A)$.
2. State Egoroff's Theorem, and give an example, with justification, to show that Egoroff's Theorem can fail if the domain has infinite measure.
3. Let $f \geq 0$ be integrable. Consider function F on \mathbb{R} defined by

$$
F(x)=\int_{-\infty}^{x} f(y) d y
$$

(a) (3 points) Show that F is continuous.
(b) (7 points) Is F necessarily Lipschitz? Justify your answer.
4. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}\frac{1}{\sqrt{1-x}} & \text { if } x \in[0,1] \backslash \mathbb{Q} \\ 0 & \text { if } x \in \mathbb{Q}\end{cases}
$$

(a) (3 points) Show that f is measurable.
(b) (4 points) Is f Lebesgue integrable? If yes, find its Lebesgue integral.
(c) (4 points) Prove or disprove that f is of bounded variation on $[0,1]$
5. Show that if f is continuous on $[0,1]$ and f^{\prime} is bounded on (a, b) everywhere, then f is absolutely continuous.
6. Find all functions $f \in L^{3}([0,1])$ satisfying the equation

$$
\left(\int_{0}^{1} x f(x) d x\right)^{3}=\frac{4}{25} \int_{0}^{1} f^{3}(x) d x
$$

MTH 636: Provide complete solutions to only 5 of the 6 problems.

1. Let $U \subset \mathbb{C}$ be an open disk. A complex-valued function $f=u(x, y)+$ $i v(x, y)$ on U is called harmonic if

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) f=0
$$

(a) Prove that any holomorphic function is harmonic.
(b) Prove that if f is a real-valued harmonic function on U, then there exists a holomorphic function g on U such that f is the real part of g.
2. State and prove the Fundamental Theorem of Algebra.
3. Let $U=\{z \in \mathbb{C}:|z|<3, \operatorname{Im}(z)>0\} \subset \mathbb{C}$, and let f be a holomorphic nowhere vanishing function on U. Show that there exists a holomorphic function g on U such that

$$
f(z)=\frac{1}{g(z)^{2}}
$$

for all $z \in U$.
4. Let $r>0$, let $z_{0} \in \mathbb{C}$, let $D^{\prime}\left(z_{0}, r\right)$ be the punctured disk of radius r around z_{0}, and let f be a function holomorphic on $D^{\prime}\left(z_{0}, r\right)$. Suppose that there exists a positive integer N and a real number α such that $\alpha<N+1$ and

$$
\left|f\left(z-z_{0}\right)\right|<c\left|z-z_{0}\right|^{-\alpha}
$$

for all $z \in D^{\prime}\left(z_{0}, r\right)$, where c is some real constant. Show that f either has a removable singularity at z_{0}, or a pole of order no larger than N.
5. Let $a>0$. Use the Residue Theorem to evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{d x}{\left(a^{2}+x^{2}\right)^{2}}
$$

6. Find a fractional linear transformation f such that $f(0)=\infty, f(i)=1$, and such that f maps the unit circle around the origin to itself.
