Analysis Qualifying Exam: August, 2010

MTH 632: Provide complete solutions to $\underline{5}$ of the $\underline{6}$ questions.
Notation: \mathbb{Q} denotes the set of rational numbers and \mathbb{R} denotes the set of real numbers.

1. Let $E \subset \mathbb{R}$ be such that $m(E)<\infty$. Suppose f and the sequence $\left\langle f_{n}\right\rangle$ be measurable functions on E such that $f_{n} \rightarrow f$ a.e. Show there exists measurable sets $G, E_{k} \subset E$ such that $E=G \cup\left(\cup_{k=1}^{\infty} E_{k}\right), m(G)=0$, and $f_{n} \rightarrow f$ uniformly on each H_{k}.
2. Let \mathcal{M} be the σ-algebra of Lebesgue measurable sets in \mathbb{R} and f be a function defined on \mathbb{R} with values in the set of extended real numbers.
(a) Show that if f is measurable then $f^{-1}(\{\infty\}) \in \mathcal{M}$ and $f^{-1}(O) \in \mathcal{M}$ for all open subsets $O \subset \mathbb{R}$.
(b) Show that if $f^{-1}(\{\infty\}) \in \mathcal{M}$ and $f^{-1}(B) \in \mathcal{M}$ for all Borel sets $B \subseteq \mathbb{R}$, then f is measurable.
3. Let $f \in L^{1}[0, \infty)$ and define

$$
g(y)=\int_{0}^{\infty} f(x) \sin (x y) d x
$$

Show that g is a bounded and continuous function of y on all of \mathbb{R}.
4. Let f be a real-valued integrable function defined on \mathbb{R}. Let $\left\langle E_{n}\right\rangle$ be a sequence of measurable sets such that $\lim _{n \rightarrow \infty} m\left(E_{n}\right)=0$. Show that $\lim _{n \rightarrow \infty} \int_{E_{n}} f d m=0$.
5. Suppose f and g are absolutely continuous functions defined of the interval $[a, b]$. Show $f g$, their product, is also absolutely continuous.
6. Let $E \subset \mathbb{R}$ have finite Lebesgue measure.
(a) Let $1 \leq p<q \leq \infty$. Show $L^{q}(E) \subset L^{p}(E)$ and $\|f\|_{p} \leq\|f\|_{q}(m(E))^{1 / p-1 / q}$ for any $f \in L^{p}(E)$.
(b) If $1 \leq p<q<r \leq \infty$. Show $L^{q}(E) \subset L^{p}(E)+L^{r}(E)$. Explain why this show that each $f \in L^{q}(E)$ can be written as a sum of two functions, $f=g+h, g \in L^{p}(E)$, $h \in L^{r}(E)$. (Hint: For $f \in L^{q}(E)$, consider the two sets $G=\{x \in E:|f(x)|>1\}$ and $H=\{x \in E:|f(x)| \leq 1\}$.)

