Analysis Qualifying Exam: August, 2010

MTH 632: Provide complete solutions to $\underline{5}$ of the $\underline{6}$ questions.

Notation: \mathbb{Q} denotes the set of rational numbers and \mathbb{R} denotes the set of real numbers.

- 1. Let $E \subset \mathbb{R}$ be such that $m(E) < \infty$. Suppose f and the sequence $\langle f_n \rangle$ be measurable functions on E such that $f_n \to f$ a.e. Show there exists measurable sets $G, E_k \subset E$ such that $E = G \cup (\bigcup_{k=1}^{\infty} E_k), m(G) = 0$, and $f_n \to f$ uniformly on each H_k .
- 2. Let \mathcal{M} be the σ -algebra of Lebesgue measurable sets in \mathbb{R} and f be a function defined on \mathbb{R} with values in the set of extended real numbers.
 - (a) Show that if f is measurable then $f^{-1}(\{\infty\}) \in \mathcal{M}$ and $f^{-1}(O) \in \mathcal{M}$ for all open subsets $O \subset \mathbb{R}$.
 - (b) Show that if $f^{-1}(\{\infty\}) \in \mathcal{M}$ and $f^{-1}(B) \in \mathcal{M}$ for all Borel sets $B \subseteq \mathbb{R}$, then f is measurable.
- 3. Let $f \in L^1[0,\infty)$ and define

$$g(y) = \int_0^\infty f(x)\sin(xy)\,dx.$$

Show that g is a bounded and continuous function of y on all of \mathbb{R} .

- 4. Let f be a real-valued integrable function defined on \mathbb{R} . Let $\langle E_n \rangle$ be a sequence of measurable sets such that $\lim_{n \to \infty} m(E_n) = 0$. Show that $\lim_{n \to \infty} \int_{E_n} f \, dm = 0$.
- 5. Suppose f and g are absolutely continuous functions defined of the interval [a, b]. Show fg, their product, is also absolutely continuous.
- 6. Let $E \subset \mathbb{R}$ have finite Lebesgue measure.
 - (a) Let $1 \le p < q \le \infty$. Show $L^{q}(E) \subset L^{p}(E)$ and $|| f ||_{p} \le || f ||_{q} (m(E))^{1/p-1/q}$ for any $f \in L^{p}(E)$.
 - (b) If $1 \le p < q < r \le \infty$. Show $L^q(E) \subset L^p(E) + L^r(E)$. Explain why this show that each $f \in L^q(E)$ can be written as a sum of two functions, f = g + h, $g \in L^p(E)$, $h \in L^r(E)$. (Hint: For $f \in L^q(E)$, consider the two sets $G = \{x \in E : |f(x)| > 1\}$ and $H = \{x \in E : |f(x)| \le 1\}$.)