Analysis Qualifying Examination August 23, 2012

MTH 632: Provide complete solutions to only 5 of the 6 problems.

1. Show that an extended real-valued function f on a measurable set E is measurable if and only if $f^{-1}\{\infty\}$ and $f^{-1}\{-\infty\}$ are measurable and for each Borel set $A, f^{-1}(A)$ is measurable.
2. Let $\left\{f_{n}\right\}$ be a sequence of intergrable functions on E for which $f_{n} \rightarrow f$ a.e. on E and f is integrable over E. Show that $\int_{E}\left|f_{n}-f\right| \rightarrow 0$ if and only if $\lim _{n \rightarrow \infty} \int_{E}\left|f_{n}\right|=\int_{E}|f|$.
3. Let f be intergrable over $(-\infty, \infty)$. Show that $\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} f(x) \cos (n x) d x=0$.
4. Prove each of the following for a function f integrable over a measurable set E.
(i) If $\left\{E_{n}\right\}_{n=1}^{\infty}$ is an ascending countable collection of measurable subsets of E, then $\int_{\bigcup_{n=1}^{\infty} E_{n}} f=\lim _{n \rightarrow \infty} \int_{E_{n}} f$.
(ii) If $\left\{E_{n}\right\}_{n=1}^{\infty}$ is a descending countable collection of measurable subsets of E, then $\int_{\bigcap_{n=1}^{\infty} E_{n}} f=\lim _{n \rightarrow \infty} \int_{E_{n}} f$.
5. A monotone function h on $[a, b]$ is called singular if $h^{\prime}=0$ a.e. Show that any monotone increasing function f on $[a, b]$ is the sum of an absolutely continuous function g and a singular function h.
6. Let $E \subset \mathbb{R}$ have finite Lebesgue measure and $1 \leq p<q \leq \infty$. Show that $L^{q}(E) \subset L^{p}(E)$ and $\|f\|_{p} \leq\|f\|_{q}(m(E))^{\frac{1}{p}-\frac{1}{q}}$ for any $f \in L^{p}(E)$.

MTH 636: Provide complete solutions to only 7 of the 8 problems.

1. Show that for any function $f=u+i v$ analytic on \mathbb{C} we have $D \circ \bar{D} f(z)=\Delta u+i \Delta v=0$ where $D=\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)$ and \triangle is the Laplacian operator.
2. Find the set of points z at which $f(z)=\left|z^{2}\right|$ is differentiable. Justify your answer.
3. Show that $2 e, e=2.718 \ldots$ is an upper bound for $\left|\int_{C} e^{z} d z\right|$ where C is the straight line contour joining the points $1+i$ and $1-i$.
4. If f is analytic for $|z| \leq 1$ then show that

$$
\frac{1}{\pi} \int_{|z| \leq 1} f(x+i y) d x d y=f(0)
$$

5. (a) If $f(z)=g(z) / h(z)$ where g and h are analytic at $z=\alpha$ but h has a simple zero at $z=\alpha$, then show that the residue of f at α is given by

$$
a_{-1}=\frac{g(\alpha)}{h^{\prime}(\alpha)} .
$$

(b) Verify the following equation using the result of 5(a)

$$
\int_{0}^{2 \pi} \frac{d \theta}{3+\cos \theta}=\frac{\pi}{\sqrt{2}}
$$

6. Find the series representation of

$$
f(z)=\frac{2}{z^{2}-4 z+3}
$$

in the following three annuli centered at 0 : (i) $0<|z|<1$, (ii) $1<|z|<3$, (iii) $3<|z|$.
7. Use Rouche's Theorem to show that all zeros of the complex-valued polynomial

$$
p(z)=6 z^{7}-2 z^{4}+3
$$

are in the interior of the unit disk.
8. Let $a>0$. Show that

$$
\int_{-\infty}^{+\infty} \frac{\cos x}{a^{2}-x^{2}} d x=\pi \frac{\sin a}{a}
$$

where the integral converges in the sense of Cauchy.

