## Analysis Qualifying Exam August 19, 2014

MTH 636: Provide complete solutions to only five of the six problems.

1. Each of the following functions has a singularity at $z=0$. Determine whether the singularity is an essential singularity, a pole, or a removable singularity. If the singularity is a pole, determine the order of the pole. Justify your answers.
(a) $\frac{z-\sin z}{z^{3}}$
(b) $\frac{\left(z+z^{-1}\right)^{2}}{z}$
2. Find the Laurent expansion of the function

$$
f(z)=\frac{2 z+1}{z^{2}+z-6}
$$

(a) in the annulus $2<|z|<3$, and
(b) in the region $|z|>3$.
3. (a) Prove that all of the roots of $z^{5}-z^{4}+z^{2}-z+6$ lie in the annulus $1 \leq|z| \leq 2$.
(b) Suppose a polynomial $p(z)$ has a zero at $z_{0}$. What is the residue of $\frac{p^{\prime}}{p}(z)$ at $z_{0}$ ?
(c) Compute

$$
\frac{1}{2 \pi i} \oint_{|z|=2} \frac{5 z^{4}-4 z^{3}+2 z-1}{z^{5}-z^{4}+z^{2}-z+6} d z .
$$

4. Suppose that $f$ is an entire function with the property there is some real number $\alpha$ such that if $z=x+i y$ is an arbitrary complex number, then $|f(z)| \leq e^{\alpha x}$. Prove that $f(z)=\lambda e^{\alpha z}$ for some $\lambda \in \mathbb{C}$.
5. Evaluate

$$
\int_{-\infty}^{\infty} \frac{\sin ^{2}(x)}{x^{2}+\pi^{2}} d x
$$

6. Suppose that $a$ is a real number with $|a|>1$. Prove:

$$
\int_{0}^{2 \pi} \frac{d \theta}{1-2 a \cos \theta+a^{2}}=\frac{2 \pi}{a^{2}-1}
$$

MTH 632: Provide complete solutions to only 5 of the 6 problems.

1. Let $D$ be a bounded set in $\mathbb{R}$, with the property that for any interval $I$,

$$
m^{*}(D \cap I) \leq \frac{1}{2} \operatorname{length}(I)
$$

where $m^{*}$ denotes the exterior or outer Lebesgue measure. Show that $D$ is measurable and has measure zero.
2. (a) State Fatou's Lemma and the Monotone Convergence Theorem.
(b) Use Fatou's Lemma to prove the Monotone Covergence Theorem.
3. Let $f$ be a measurable function on a bounded interval $J$, which is finite a.e. on $J$. Given any $\epsilon>0$, show that there exists a constant $M$ such that $|f(x)|<M$ for all $x \in J$ outside of some set of measure $<\epsilon$.
4. Let $f_{k} \rightarrow f$ a.e. on $\mathbb{R}$. Show that given $\epsilon>0$, there exists a set $E$ of measure less than $\epsilon$, so that $f_{k} \rightarrow f$ uniformly on $I \backslash E$, for any finite interval $I$.
5. Compute the following limit and justify your calculation:

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{x^{n-2}}{1+x^{n}} \cos (\pi n x) d x
$$

6. Let $1 \leq r<p<s<\infty$.
(a) Show that $L^{r}(\mathbb{R}) \cap L^{s}(\mathbb{R}) \subset L^{p}(\mathbb{R})$.
(b) Show that $L^{s}([0,1]) \subset L^{r}([0,1])$.
(c) Is it true that $L^{s}(\mathbb{R}) \subset L^{r}(\mathbb{R})$ ? Justify your answer.
