Central Michigan University Department of Mathematics Analysis Qualifying Examination

August 26, 2015

INSTRUCTIONS

(1) This question paper has 6 problems from Real Analysis (MTH 632) numbered R1 through R6 and 6 problems from Complex Analysis numbered C1 through C6.
(2) Do five problems from the Real Analysis (MTH 632) part, and another five problems from the Complex Analysis (MTH 636) part.
(3) Begin each problem on a separate sheet of paper, and clearly write the problem number and your name.
(4) At the end, submit the Real Analysis and Complex Analysis solutions in separate bunches.

Good Luck!

MTH 636: Do five of the following six :
(C1) (a) Find the Laurent expansion of the function $f(z)=\frac{1}{z-2}$ in the annulus

$$
\{z \in \mathbb{C}: \sqrt{5}<|z-i|<\infty\} .
$$

(b) Find the number of roots (counting multiplicity) of the equation

$$
3 z^{2015}+z^{2}+1=0
$$

which lie in the unit disc $\{z \in \mathbb{C}:|z|<1\}$.
(C2) Locate all isolated singularities of the function f on \mathbb{C} given below, and classify these singularities as removable singularities, poles and essential singularities. For each pole, find the order.

$$
f(z)=\frac{(z-1)(z-2)^{2} \cdot \sin \left(\frac{1}{z}\right)}{\sin ^{2}(\pi z)}
$$

(C3) (a) Suppose that the radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ is equal to 1. Find the radius of convergence of the power series $\sum_{n=1}^{\infty} b_{n} z^{n}$, where

$$
b_{n}=\left(1+\frac{1}{n}\right)^{n^{2}} \cdot a_{n}
$$

(b) In each of (i) and (ii) below, find all holomorphic functions f on the unit disc $\{z \in \mathbb{C}:|z|<1\}$ satisfying the given conditions, or show that no such function f exists. Give complete justification for all your claims.
(i) $f\left(\frac{1}{n}\right)=0$, for each positive integer $n \geq 2$.
(ii) $|f(z)|=1+|z|^{2}$ for each z in the unit disc. (Hint: Consider the function $\frac{1}{f}$.)
(C4) Let f be a holomorphic function on the unit disc such that if we write $f=u+i v$ with u, v real valued, then $v(z)=u(z)^{2}$ for each z in the unit disc. If $u(0)=1$, find the function f.
(C5) Let f be a holomorphic function on the upper half-plane $H=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$, such that for each $z \in H$ we have $|f(z)|<1$. Show that the n-th derivative of f satisfies

$$
\left|f^{(n)}(z)\right| \leq \frac{n!}{(\operatorname{Im} z)^{n}}
$$

(C6) (a) Let Γ be the unit circle $\{z \in \mathbb{C}:|z|=1\}$ oriented counterclockwise. Compute the line integral

$$
\int_{\Gamma} \frac{\sin (\pi z)}{\left(z-\frac{1}{2}\right)(z-2)} d z
$$

(b) Use the method of residues to compute the integral

$$
\int_{-\infty}^{\infty} \frac{d x}{1+x+x^{2}}
$$

MTH 632: Provide complete solutions to only 5 of the 6 problems.
(R1) Let E be a set with finite outer measure. Prove that if E is not measurable, then there is an open set U containing E with $m^{*}(U)<\infty$ and

$$
m^{*}(U \backslash E)>m^{*}(U)-m^{*}(E) .
$$

(R2) Let E be measurable, $1 \leq p<\infty$ and q the conjugate of p. Prove that if $g \in L^{p}(E)$ has the property that $\int_{E} f \cdot g=0$ for every $f \in L^{q}(E)$ then $g=0$ a.e.
(R3) (a) State Fatou's Lemma.
(b) Suppose that $\left\{f_{n}\right\}$ is a sequence of non-negative measurable functions on \mathbb{R} that converge pointwise to f on \mathbb{R}, and

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n}=\int_{\mathbb{R}} f
$$

Prove that for every measurable set E,

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n}=\int_{E} f .
$$

(R4) Let $\left\{f_{n}\right\}$ be a sequence of functions in $L^{1}(\mathbb{R})$, with $\left\|f_{n}\right\|_{L^{1}} \leq 1$ for all n. Define

$$
f(x)= \begin{cases}\lim _{n \rightarrow \infty} f_{n}(x) & \text { if the limit exists } \\ 0 & \text { otherwise }\end{cases}
$$

Prove that f is Lebesgue measurable and that $\|f\|_{L^{1}} \leq 1$.
(R5) (a) Give the definition of an absolutely continuous function.
(b) Let f be absolutely continuous on \mathbb{R} with

$$
\lim _{t \rightarrow 0^{+}} \int_{\mathbb{R}} \frac{|f(x+t)-f(x)|}{t}=0 .
$$

Prove that f is constant.
(R6) Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on E that converges to the realvalued function f pointwise on E. Prove that $E=\bigcup_{k=1}^{\infty} E_{k}$, where for each $k \geq 1$, E_{k} is measurable, $\left\{f_{n}\right\}$ converges uniformly to f on E_{k} for all $k \geq 2$, and $m\left(E_{1}\right)=0$.

