Analysis Qualifying Exam: January 7, 2010

MTH 632: Provide complete solutions to $\underline{5}$ of the $\underline{6}$ questions.

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Show that $f^{-1}(E)$ is a Borel set whenever E is a Borel set. Explain why this shows that f is a measurable function.
2. Let $\left\langle f_{n}\right\rangle$ be a sequence of nonnegative functions. Show

$$
\int \underline{\lim } f_{n} \leq \underline{\lim } \int f_{n}
$$

3. Let $\left\langle f_{n}\right\rangle$ be a sequence of measurable functions such that $f_{n} \rightarrow 0$ in measure, and suppose that for all $\epsilon>0$,

$$
\sum_{n=1}^{\infty} m\left(\left\{x:\left|f_{n}(x)\right|>\epsilon\right\}\right)<\infty
$$

Show that $f_{n} \rightarrow 0$ a.e.
Hint: Consider the sets $A(\epsilon)=\left\{x: \forall k, \exists n \geq k,\left|f_{n}(x)\right|>\epsilon\right\}$ and $A_{n}(\epsilon)=\left\{x:\left|f_{n}(x)\right|>\epsilon\right\}$.
4. Suppose f is an integrable function on \mathbb{R} then

$$
\lim _{t \rightarrow 0} \int_{-\infty}^{\infty}|f(x+t)-f(x)| d x=0
$$

5. (a) The Fundamental Theorem of Calculus tells us that if f is continuous on $[a, b]$ then $\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$. Does this still hold if f is simply integrable? If yes prove your answer. If not, what conditions on f are necessary for it to hold.
(b) The Fundamental Theorem of Calculus also tells us that if $f^{\prime}(x)$ is continuous then $\int_{a}^{x} f^{\prime}(t) d t=f(x)-f(a)$. Is there a wider class of functions for which this holds? Prove your answer.
6. Let a sequence $\left\langle g_{n}\right\rangle$ in $L^{q}[0,1], 1<q<\infty$ have the property that $\left|\int_{0}^{1} f g_{n}\right| \leq\|f\|_{p}$ for all n and all $f \in L^{p}[0,1], \frac{1}{p}+\frac{1}{q}=1$. Answer the following questions with a proof for a yes answer, and a counterexample for a no answer.
(a) Does it follow that $\left\langle\|g\|_{q}\right\rangle$ is bounded?
(b) Must there be a subsequence $\left\langle g_{n_{k}}\right\rangle$ of $\left\langle g_{n}\right\rangle$ and a $g \in L^{q}[0,1]$ such that

$$
\left\|g_{n_{k}}-g\right\|_{q} \rightarrow 0 \text { as } k \rightarrow \infty ?
$$

MTH 636: Provide complete solutions to $\underline{6}$ of the $\underline{7}$ questions.

1. Let $f(z)=\left\{\begin{array}{cc}\frac{z^{5}}{|z|^{4}} & \text { if } z \neq 0 \\ 0 & \text { if } z=0 .\end{array}\right.$

Show that the Cauchy-Riemann equations hold at $z=0$, but f is not differentiable at $z=0$.
2. If f is analytic in the annulus $1 \leq|z| \leq 2$ and $|f(z)| \leq 3$ on $|z|=1$ and $|f(z)| \leq 12$ on $|z|=12$, prove that $|f(z)| \leq 3|z|^{2}$ for $1 \leq|z| \leq 2$.
Hint: Consider $\frac{f(z)}{3 z^{2}}$.
3. Let g be a continuous on the real interval $[-1,2]$, and for each complex number z define

$$
F(z):=\int_{-1}^{2} g(t) \sin (z t) d t
$$

Prove that F is entire, and find its power series around the origin. Also, prove that for all z

$$
F^{\prime}(z):=\int_{-1}^{2} t g(t) \cos (z t) d t
$$

4. Find the Laurent series for the function

$$
f(z)=\frac{1}{(z-1)(z-2)}
$$

in each of the following domains:
(a) $|z|<1$
(b) $1<|z|<2$
(c) $2<|z|$
5. Does there exist a function $f(z)$ analytic in $|z|<1$ and satisfying $f\left(\frac{1}{2}\right)=\frac{1}{2}, \quad f\left(\frac{1}{3}\right)=\frac{1}{2}, \quad f\left(\frac{1}{4}\right)=\frac{1}{4}, \quad f\left(\frac{1}{5}\right)=\frac{1}{4}, \quad, \ldots$, $f\left(\frac{1}{2 n}\right)=\frac{1}{2 n}, \quad f\left(\frac{1}{2 n+1}\right)=\frac{1}{2}, \quad \ldots$?
Justify your answer.
6. Prove that the equation $z+3+2 e^{z}=0$ has precisely one root in the left half-plane.
7. Using the method of residues verify that $\int_{-\pi}^{\pi} \frac{1}{1+\sin ^{2} \theta} d \theta=\pi \sqrt{2}$.

