Analysis Qualifying Exam: January 7, 2010

MTH 632: Provide complete solutions to 5 of the 6 questions.

- 1. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Show that $f^{-1}(E)$ is a Borel set whenever E is a Borel set. Explain why this shows that f is a measurable function.
- 2. Let $\langle f_n \rangle$ be a sequence of nonnegative functions. Show

$$\int \underline{\lim} f_n \le \underline{\lim} \int f_n.$$

3. Let $\langle f_n \rangle$ be a sequence of measurable functions such that $f_n \to 0$ in measure, and suppose that for all $\epsilon > 0$,

$$\sum_{n=1}^{\infty} m(\{x : |f_n(x)| > \epsilon\}) < \infty.$$

Show that $f_n \to 0$ a.e.

Hint: Consider the sets $A(\epsilon) = \{x : \forall k, \exists n \ge k, |f_n(x)| > \epsilon\}$ and $A_n(\epsilon) = \{x : |f_n(x)| > \epsilon\}.$

4. Suppose f is an integrable function on \mathbb{R} then

$$\lim_{t \to 0} \int_{-\infty}^{\infty} |f(x+t) - f(x)| \, dx = 0.$$

- 5. (a) The Fundamental Theorem of Calculus tells us that if f is continuous on [a, b] then $\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$. Does this still hold if f is simply integrable? If yes prove your answer. If not, what conditions on f are necessary for it to hold.
 - (b) The Fundamental Theorem of Calculus also tells us that if f'(x) is continuous then $\int_{a}^{x} f'(t) dt = f(x) f(a)$. Is there a wider class of functions for which this holds? Prove your answer.
- 6. Let a sequence $\langle g_n \rangle$ in $L^q[0,1]$, $1 < q < \infty$ have the property that $\left| \int_0^1 fg_n \right| \le ||f||_p$ for all n and all $f \in L^p[0,1]$, $\frac{1}{p} + \frac{1}{q} = 1$. Answer the following questions with a proof for a yes answer, and a counterexample for a no answer.
 - (a) Does it follow that $\langle ||g||_q \rangle$ is bounded?
 - (b) Must there be a subsequence $\langle g_{n_k} \rangle$ of $\langle g_n \rangle$ and a $g \in L^q[0,1]$ such that

$$||g_{n_k} - g||_q \to 0 \text{ as } k \to \infty$$
?

MTH 636: Provide complete solutions to $\underline{6}$ of the $\underline{7}$ questions.

1. Let $f(z) = \begin{cases} \frac{z^5}{|z|^4} & \text{if } z \neq 0\\ 0 & \text{if } z = 0. \end{cases}$

Show that the Cauchy-Riemann equations hold at z = 0, but f is not differentiable at z = 0.

- 2. If f is analytic in the annulus $1 \le |z| \le 2$ and $|f(z)| \le 3$ on |z| = 1 and $|f(z)| \le 12$ on |z| = 12, prove that $|f(z)| \le 3|z|^2$ for $1 \le |z| \le 2$. Hint: Consider $\frac{f(z)}{3z^2}$.
- 3. Let g be a continuous on the real interval [-1, 2], and for each complex number z define

$$F(z) := \int_{-1}^{2} g(t) \sin(zt) \, dt.$$

Prove that F is entire, and find its power series around the origin. Also, prove that for all z

$$F'(z) := \int_{-1}^{2} tg(t) \cos(zt) dt.$$

4. Find the Laurent series for the function

$$f(z) = \frac{1}{(z-1)(z-2)}$$

in each of the following domains:

(a)
$$|z| < 1$$
 (b) $1 < |z| < 2$ (c) $2 < |z|$

- 5. Does there exist a function f(z) analytic in |z| < 1 and satisfying
 - $f\left(\frac{1}{2}\right) = \frac{1}{2}, \quad f\left(\frac{1}{3}\right) = \frac{1}{2}, \quad f\left(\frac{1}{4}\right) = \frac{1}{4}, \quad f\left(\frac{1}{5}\right) = \frac{1}{4}, \quad \dots,$ $f\left(\frac{1}{2n}\right) = \frac{1}{2n}, \quad f\left(\frac{1}{2n+1}\right) = \frac{1}{2}, \quad \dots?$ Justify your answer.
- 6. Prove that the equation $z + 3 + 2e^z = 0$ has precisely one root in the left half-plane.

7. Using the method of residues verify that
$$\int_{-\pi}^{\pi} \frac{1}{1+\sin^2\theta} d\theta = \pi\sqrt{2}$$
.