Name:

Part 1 Do only five of the six problems.
(1) Suppose $A \subseteq \mathbb{R}$ and there are Borél sets B_{1}, B_{2} such that $m\left(B_{1}\right)=m\left(B_{2}\right)$ and $B_{1} \subseteq A \subseteq B_{2}$. Answer the following questions with proofs.
(a) Must A be measurable?
(b) If the answer to part (a) is negative, is it possible to impose some condition(s) so that A is measurable.
(2) (a) For an extended real-valued function f, what do we mean by f being Borél measurable?
(b) Must a continuous real-valued function on \mathbb{R} be Borél measurable? Prove your answer.
(c) Must a nondecreasing function defined on \mathbb{R} be Borél measurable? Prove your answer.
(3) (a) Let $E \subseteq \mathbb{R}$ be a measurable set with finite measure and $f: E \rightarrow \mathbb{R}$ a measurable function. Show that for each $\epsilon>0$, there is an M such that $m(\{x \in E:|f(x)|>M\})<\epsilon$. (Hint: Use f to break up E as a countable union.)
(b) Let $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ be sequences of measurable functions on a measurable set E with $m(E)<\infty$. Suppose $f_{n} \rightarrow f$ in measure and $g_{n} \rightarrow g$ in measure. User part (a) to prove that $f_{n} g_{n} \rightarrow f g$ in measure.
(4) Let $f \in L^{2}(\mathbb{R})$ (i.e., f is measurable on \mathbb{R} and $\int_{\mathbb{R}}|f(t)|^{2} d t<\infty$). Answer the following questions with justification.
(a) Is it true that $f \in L^{1}(\mathbb{R})$?
(b) For each $x \in \mathbb{R}$, does $\int_{x-\delta}^{x+\delta} f(t) d t$ make sense for all $\delta>0$?
(c) How big is the set of all $x \in \mathbb{R}$ such that $\lim _{\delta \rightarrow 0^{+}} \frac{1}{2 \delta} \int_{x-\delta}^{x+\delta} f(t) d t$ exists?
(d) Find $\lim _{\delta \rightarrow 0^{+}} \frac{1}{2 \delta} \int_{x-\delta}^{x+\delta} f(t) d t$ wherever exists.
(5) (a) If exists, give an example of a Lebesgue integrable function $f \in\left(L^{1}[0,1]\right) \backslash\left(L^{\infty}[0,1]\right)$. Prove your answer, or show that no such example exists.
(b) Let $p<q$ be positive numbers ≥ 1 be fixed. Are $L^{p}[0,1]$ and $L^{q}[0,1]$ comparable? Prove your answers or give counterexamples as needed.
(c) What about $L^{p}[0, \infty)$ and $L^{q}[0, \infty)$?
(6) Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by $f(x)= \begin{cases}x^{2} & \text { if } x \text { is rational } \\ \frac{1}{\sqrt{x}} & \text { if } x \text { is irrational. }\end{cases}$

Answer each of the following with proofs.
(a) Is $f \in L^{p}[0, \infty]$ for any $p \geq 1$?
(b) Find all $p \in[1, \infty]$ such that f defines a bounded linear functional on $L^{p}[0,1]$.
(Please turn over for part 2.)

Part 2 Do only five of the six problems.
(1) (a) State the Cauchy-Riemann equations for a complex function $f(z)=u(x, y)+i v(x, y)$.
(b) Let $f(z)=u(x, y)+i v(x, y)$ be defined in some open set G containing the point z_{0}. Suppose the first partial derivatives of u and v exist on G, are continuous at z_{0}, and satisfy the Cauchy-Riemann equations at z_{0}. Is it true that f is differentiable at z_{0} ? Justify your answer.
(2) Suppose that f is analytic at each point of the closed disk $|z| \leq 1$ and that $f(0)=0$. Prove that the function

$$
F(z)= \begin{cases}f(z) / z, & z \neq 0 \\ f^{\prime}(0), & z=0\end{cases}
$$

is analytic on $|z| \leq 1$. (Hint: Note that

$$
G(z):=\oint_{|\zeta|=1} \frac{f(\zeta) / \zeta}{\zeta-z} d \zeta
$$

is analytic in the open disk $|z|<1$.)
(3) Does there exist an entire function such that

$$
f(z)= \begin{cases}\frac{1}{z} & \text { if }|z|>2 \\ e^{z} & \text { if }|z|<1 ?\end{cases}
$$

Justify your answer.
(4) Prove that all the roots of $z^{4}-z^{3}+7=0$ lie in the annulus $1<|z|<2$.
(5) Compute

$$
\oint_{|z|=2} \frac{1}{z^{4}-z^{3}+7} d z
$$

Justify your answer.
(6) Compute

$$
\int_{0}^{\infty} \frac{\sin \left(x^{3}\right)}{x} d x
$$

Justify your answer.

