Analysis Qualifying Examination January 13, 2012

MTH 632: Provide complete solutions to only five of the six problems.

- 1. Let *E* be a measurable set of finite outer measure. Then, show that, for each $\epsilon > 0$, there is a finite disjoint collection of open intervals $\{I_k\}_{k=1}^n$ for which if $\bigcup_{k=1}^n I_k = O$, then $m^*(E \sim O) + m^*(O \sim E) < \epsilon$.
- 2. Let the function f be defined on a measurable set E. Show that f is measurable if and only if for each Borel set A, $f^{-1}(A)$ is measurable.
- 3. Let $\{f_n\}$ be a sequence of nonnegative measurable functions on E. Show that

$$\int_{E} liminf f_n \le liminf \int_{E} f_n$$

4. Let $f \in L^1[0,\infty)$ and define

$$g(y) = \int_{0}^{\infty} f(x)\cos(xy)dx.$$

Show that

- (i) g is a bounded function, and
- (ii) g is a continuous function of y on all of \mathbb{R} .
- 5. Let f and g be absolutely continuous functions on [a, b]. Show that
 - (i) fg, their product, is absolutely continuous, and
 - (ii)

$$\int_{a}^{b} f(t)g'(t)dt = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'(t)g(t)dt$$

6. Let $\{f_n\}$ be a sequence of functions in $L^2[a, b]$. Suppose $f \in L^2[a, b]$ is such that $\lim_{n \to \infty} || f_n - f ||_2 = 0$. Show that

(i)
$$\int_{a}^{b} f^{2}(t)dt = \lim_{n \to \infty} \int_{a}^{b} f_{n}^{2}(t)dt$$
, and
(ii) $\int_{a}^{x} f(t)dt = \lim_{n \to \infty} \int_{a}^{x} f_{n}(t)dt$ for $a \le x \le b$.

MTH 636: Provide complete solutions to only 5 of the 6 problems.

- 1. (a) Describe the range of $f(z) = -\frac{1}{2}z^3$ defined on $\{z = x + iy : |z| < 1, x > 0, y > 0\}$. (b) Prove that $\lim_{z \to i} z^2 = -1$.
- 2. Find a harmonic conjugate of $u = e^x \sin y$.
- 3. Compute

(a)

$$\int_C \frac{1}{z} \, dz,$$

where C is defined by $x^2 + 4y^2 = 1$, traversed once counterclockwise. (b)

$$\int_C |z| \ dz,$$

where C is the line segment with the initial point (-1 - i) and the final point (1 + i).

4. Prove that for any z such that |z| < 1,

$$\left|\frac{\left(\frac{1}{2} + \frac{1}{3}i\right) - z}{1 - \left(\frac{1}{2} - \frac{1}{3}i\right)z}\right| < 1.$$

5. A doubly periodic function is a function defined at all points on the complex plane and having two "periods", which are complex numbers u and v, where u and v are not real multiples of each other. That u and v are periods of a function f means that

$$f(z) = f(z+u) = f(z+v),$$

for all values of the complex number z. Give an example of a non constant doubly periodic complex valued function on \mathbb{C} . Is it possible to find a non constant analytic example?

6. Recall Jordan's lemma: If m > 0 and P/Q is the quotient of two polynomials such that

degree
$$Q \ge 1 + degree P$$
,

then

$$\lim_{D \to \infty} \int_C e^{imz} \frac{P(z)}{Q(z)} \, dz = 0,$$

where C is the upper half-circle of radius ρ . Prove Jordan's lemma directly (without quoting the lemma itself) in the case that m = 1, P = 1 and $Q = z^3$.