Analysis Qualifying Examination January 13, 2012

MTH 632: Provide complete solutions to only five of the six problems.

1. Let E be a measurable set of finite outer measure. Then, show that, for each $\epsilon>0$, there is a finite disjoint collection of open intervals $\left\{I_{k}\right\}_{k=1}^{n}$ for which if $\cup_{k=1}^{n} I_{k}=O$, then $m^{*}(E \sim$ $O)+m^{*}(O \sim E)<\epsilon$.
2. Let the function f be defined on a measurable set E. Show that f is measurable if and only if for each Borel set A, $f^{-1}(A)$ is measurable.
3. Let $\left\{f_{n}\right\}$ be a sequence of nonnegative measurable functions on E. Show that

$$
\int_{E} \liminf f_{n} \leq \liminf \int_{E} f_{n}
$$

4. Let $f \in L^{1}[0, \infty)$ and define

$$
g(y)=\int_{0}^{\infty} f(x) \cos (x y) d x
$$

Show that
(i) g is a bounded function, and
(ii) g is a continuous function of y on all of \mathbb{R}.
5. Let f and g be absolutely continuous functions on $[a, b]$. Show that
(i) $f g$, their product, is absolutely continuous, and
(ii)

$$
\int_{a}^{b} f(t) g^{\prime}(t) d t=f(b) g(b)-f(a) g(a)-\int_{a}^{b} f^{\prime}(t) g(t) d t
$$

6. Let $\left\{f_{n}\right\}$ be a sequence of functions in $L^{2}[a, b]$. Suppose $f \in L^{2}[a, b]$ is such that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{2}=$ 0 . Show that
(i) $\int_{a}^{b} f^{2}(t) d t=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}^{2}(t) d t$, and
(ii) $\int_{a}^{x} f(t) d t=\lim _{n \rightarrow \infty} \int_{a}^{x} f_{n}(t) d t$ for $a \leq x \leq b$.

MTH 636: Provide complete solutions to only 5 of the 6 problems.

1. (a) Describe the range of $f(z)=-\frac{1}{2} z^{3}$ defined on $\{z=x+i y:|z|<1, x>0, y>0\}$.
(b) Prove that $\lim _{z \rightarrow i} z^{2}=-1$.
2. Find a harmonic conjugate of $u=e^{x} \sin y$.
3. Compute
(a)

$$
\int_{C} \frac{1}{z} d z
$$

where C is defined by $x^{2}+4 y^{2}=1$, traversed once counterclockwise.
(b)

$$
\int_{C}|z| d z,
$$

where C is the line segment with the initial point $(-1-i)$ and the final point $(1+i)$.
4. Prove that for any z such that $|z|<1$,

$$
\left|\frac{\left(\frac{1}{2}+\frac{1}{3} i\right)-z}{1-\left(\frac{1}{2}-\frac{1}{3} i\right) z}\right|<1
$$

5. A doubly periodic function is a function defined at all points on the complex plane and having two "periods", which are complex numbers u and v, where u and v are not real multiples of each other. That u and v are periods of a function f means that

$$
f(z)=f(z+u)=f(z+v)
$$

for all values of the complex number z. Give an example of a non constant doubly periodic complex valued function on \mathbb{C}. Is it possible to find a non constant analytic example?
6. Recall Jordan's lemma: If $m>0$ and P / Q is the quotient of two polynomials such that

$$
\text { degree } Q \geq 1+\text { degree } P
$$

then

$$
\lim _{\rho \rightarrow \infty} \int_{C} e^{i m z} \frac{P(z)}{Q(z)} d z=0
$$

where C is the upper half-circle of radius ρ. Prove Jordan's lemma directly (without quoting the lemma itself) in the case that $m=1, P=1$ and $Q=z^{3}$.

