Analysis Qualifying Examination January 3, 2013

MTH 632: Provide complete solutions to only 5 of the 6 problems.

1. Let I be an interval and $f: I \rightarrow \mathbf{R}$ be increasing. Show that f is measurable by first showing that, for each natural number n, the strictly increasing function $x \mapsto f(x)+x / n$ is measurable, and then taking pointwise limits.
2. Let $f \in L^{1}[0, \infty)$ and define

$$
g(y)=\int_{0}^{\infty} f(x) \cos (x y) d x
$$

Show that
(a) g is a bounded function, and
(b) g is a continuous function of y on all of \mathbb{R}
3. Let g be a nonnegative integrable function over E and suppose $\left\{f_{n}\right\}$ is a sequence of measurable functions on E such that for each $n,\left|f_{n}\right| \leq g$ a.e. on E. Show that

$$
\int_{E} \liminf f_{n} \leq \liminf \int_{E} f_{n} \leq \limsup \int_{E} f_{n} \leq \int_{E} \limsup f_{n}
$$

4. Let f be a real-valued integrable function defined on \mathbb{R}. Let $\left\langle E_{n}\right\rangle$ be a sequence of measurable sets such that $\lim _{n \rightarrow \infty} m\left(E_{n}\right)=0$. Show that $\lim _{n \rightarrow \infty} \int_{E_{n}} f d m=0$.
5. (a) Let f be a continuous function on $[0,1]$ that is absolutely continuous on $[\epsilon, 1]$ for each $0<\epsilon<1$.
(b) Show that f may not be absolutely continuous on $[0,1]$.
(c) Show that f is absolutely continuous on $[0,1]$ if it is increasing.
6. (a) If g is a function in L^{q}, define a function F on L^{p} where $\frac{1}{q}+\frac{1}{p}=1$, by the equation

$$
F(f)=\int f g
$$

Show that F is a bounded linear function on L^{p}.
(b) If $f \in L^{1}$ and $g \in L^{\infty}$, then show that

$$
\int|f g| \leq\|f\|_{1}\|g\|_{\infty}
$$

MTH 636: Provide complete solutions to only 6 of the 7 problems.

1. Find the set of points z at which $f(z)=\left|z^{3}\right|$ is differentiable. Justify your answer.
2. Show that $4 e, e=2.718 \ldots$ is an upper bound for $\left|\int_{C} z^{2} e^{z} d z\right|$ where C is the straight line contour joining the points $1+i$ and $1-i$.
3. If f is analytic for $|z| \leq 1$ then show that

$$
\frac{1}{\pi} \int_{|z| \leq 1} f(x+i y) d x d y=f(0)
$$

4. Find the series representation of

$$
f(z)=\frac{1}{(z-1)(z-2)}
$$

in the following two annuli centered at 0 : (i) $1<|z|<2$, (ii) $2<|z|<+\infty$.
5. Use Rouche's Theorem to show that all zeros of the complex-valued polynomial

$$
p(z)=z^{6}-4 z^{2}+11
$$

lie in the annulus $1<|z|<2$.
6. If $f(z)=g(z) / h(z)$ where g and h are analytic at $z=\alpha$ but h has a simple zero at $z=\alpha$, then show that the residue of f at α is given by

$$
a_{-1}=\frac{g(\alpha)}{h^{\prime}(\alpha)}
$$

7. Show that

$$
\int_{-\infty}^{+\infty} \frac{x \sin x}{1+x^{2}} d x=\frac{\pi}{e}
$$

where the integral converges in the sense of Cauchy.

