Analysis Qualifying Examination January 10, 2014

MTH 632: Provide complete solutions to only 5 of the 6 problems.

- 1. Prove that if $E \subset [a, b]$ and $m^*(E) = 0$ then the complement of E in [a, b] is dense in [a, b].
- 2. Let $\{f_n\}$ be a sequence of real-valued measurable functions defined on [0, 1]. Show that there exists a sequence of positive real numbers $\{a_n\}$ such that $a_n f_n \to 0$ a.e.

Hint: Use Lusin's Theorem.

- 3. Let f be non-negative, bounded and measurable over a set E of finite measure with $\int_E f = 0$. Show that f = 0 a.e.
- 4. Let g be integrable over [a, b], and define $f(x) = \int_a^x g, \forall x \in [a, b]$. Show that f is absolutely continuous on [a, b].
- 5. Define

$$f(x) = \begin{cases} 0 & x \text{ rational} \\ 1/a & x \text{ irrational and } a \text{ is the first non-zero integer in the decimal expansion of } x. \end{cases}$$

For example, if x = 0.002439..., then a = 2.

- (a) Prove that f is measurable.
- (b) Find $\int_0^1 f$ if the integral exists.
- 6. Suppose that $f \in L^{\infty}(\mathbb{R}) \cap L^{1}(\mathbb{R})$.
 - (a) Show that $f \in L^p(\mathbb{R})$ for any 1 .
 - (b) Show that $\lim_{p\to\infty} ||f||_p = ||f||_{\infty}$.

MTH 636: Provide complete solutions to only 7 of the 8 problems. * is xtra-credit.

- 1. Find the set of points z at which $f(z) = |z^4|$ is differentiable. Justify your answer.
- 2. Assume R > 0, $M \ge 0$. Suppose f(z) is analytic on $|z| \le R$, f(0) = 0 and $|f(z)| \le M$ for $|z| \le R$. Prove Schwarz's lemma, that is,

$$|f(z)| \le \frac{M}{R}|z|.$$

- 3. Show that 8e, e = 2.718..., is an upper bound for $|\int_C z^4 e^z dz|$, where C is the straight line contour joining the points 1 + i and 1 i.
- 4. If f is analytic for $|z| \leq 1$ then show that

(a)

$$\frac{1}{\pi} \int_{|z| \le 1} f(x+iy) dx \, dy = f(0).$$

*(b) Show also that (Gauss' mean value theorem)

$$\frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) d\theta = f(0).$$

5. If f(z) = g(z)/h(z), where g and h are analytic at $z = \alpha$, but h has a simple zero at $z = \alpha$, then show that the residue of f at α is given by

$$a_{-1} = \frac{g(\alpha)}{h'(\alpha)}.$$

6. Find the Laurent series expansion of

$$f(z) = \frac{2}{(z+3)(z+1)}$$

in the annulus 1 < |z| < 3.

7. Use Rouche's Theorem to show that all zeros of the complex-valued polynomial

$$p(z) = z^7 - 5z^3 + 12$$

lie between the circles |z| = 1 and |z| = 2.

8. Let m > 0. Show that

$$\int_0^{+\infty} \frac{\cos mx}{x^2 + 1} dx = \frac{\pi}{2} e^{-m}.$$