Analysis Qualifying Examination January 10, 2014

MTH 632: Provide complete solutions to only 5 of the 6 problems.

1. Prove that if $E \subset[a, b]$ and $m^{*}(E)=0$ then the complement of E in $[a, b]$ is dense in $[a, b]$.
2. Let $\left\{f_{n}\right\}$ be a sequence of real-valued measurable functions defined on $[0,1]$. Show that there exists a sequence of positive real numbers $\left\{a_{n}\right\}$ such that $a_{n} f_{n} \rightarrow 0$ a.e.
Hint: Use Lusin's Theorem.
3. Let f be non-negative, bounded and measurable over a set E of finite measure with $\int_{E} f=0$. Show that $f=0$ a.e.
4. Let g be integrable over $[a, b]$, and define $f(x)=\int_{a}^{x} g, \forall x \in[a, b]$. Show that f is absolutely continuous on $[a, b]$.
5. Define

$$
f(x)= \begin{cases}0 & x \text { rational } \\ 1 / a & x \text { irrational and } a \text { is the first non-zero in- } \\ & \text { teger in the decimal expansion of } x\end{cases}
$$

For example, if $x=0.002439 \ldots$, then $a=2$.
(a) Prove that f is measurable.
(b) Find $\int_{0}^{1} f$ if the integral exists.
6. Suppose that $f \in L^{\infty}(\mathbb{R}) \cap L^{1}(\mathbb{R})$.
(a) Show that $f \in L^{p}(\mathbb{R})$ for any $1<p<\infty$.
(b) Show that $\lim _{p \rightarrow \infty}\|f\|_{p}=\|f\|_{\infty}$.

MTH 636: Provide complete solutions to only 7 of the 8 problems. ${ }^{*}$ is xtra-credit.

1. Find the set of points z at which $f(z)=\left|z^{4}\right|$ is differentiable. Justify your answer.
2. Assume $R>0, M \geq 0$. Suppose $f(z)$ is analytic on $|z| \leq R, f(0)=0$ and $|f(z)| \leq M$ for $|z| \leq R$. Prove Schwarz's lemma, that is,

$$
|f(z)| \leq \frac{M}{R}|z| .
$$

3. Show that $8 e, e=2.718 \ldots$, is an upper bound for $\left|\int_{C} z^{4} e^{z} d z\right|$, where C is the straight line contour joining the points $1+i$ and $1-i$.
4. If f is analytic for $|z| \leq 1$ then show that
(a)

$$
\frac{1}{\pi} \int_{|z| \leq 1} f(x+i y) d x d y=f(0)
$$

*(b) Show also that (Gauss' mean value theorem)

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) d \theta=f(0)
$$

5. If $f(z)=g(z) / h(z)$, where g and h are analytic at $z=\alpha$, but h has a simple zero at $z=\alpha$, then show that the residue of f at α is given by

$$
a_{-1}=\frac{g(\alpha)}{h^{\prime}(\alpha)} .
$$

6. Find the Laurent series expansion of

$$
f(z)=\frac{2}{(z+3)(z+1)}
$$

in the annulus $1<|z|<3$.
7. Use Rouche's Theorem to show that all zeros of the complex-valued polynomial

$$
p(z)=z^{7}-5 z^{3}+12
$$

lie between the circles $|z|=1$ and $|z|=2$.
8. Let $m>0$. Show that

$$
\int_{0}^{+\infty} \frac{\cos m x}{x^{2}+1} d x=\frac{\pi}{2} e^{-m}
$$

