DEPARTMENT OF MATHEMATICS Ph.D. QUALIFYING EXAMINATION - STATISTICS January 2023

General Instructions

- There are two parts in this exam: STA 584 and STA 682. You are to answer all questions. The score for each part will be converted to its percentage.
- Write on one side only. Begin each subpart on a new sheet with the problem number noted. You must show all your work and justifications correctly and completely to receive full credits. Partial credits may be given for partially correct solutions.
- For each problem/subproblem, hand in only the answer that you want to be graded. If necessary, please make clear, e.g., by crossing out the other answer(s), which answer should be graded. Crossed-out work will be ignored. Failure to follow this instruction for a problem will result in a zero score for that problem.
- If a theorem is applied, you must clearly state the theorem, identify its assumption(s) and conclusion(s), and justify why it is applicable. New notations must be defined before use.
- When finished, please collate all pages according to the problem numbers and then number the pages accordingly. Hand in also the exam paper.

By signing below, I hereby acknowledge that I have completely read and fully understand the instructions.

[^0]Printed Name

Part A: STA 584

This part consists of four problems, each with subparts. It has a possible total of 51 points.
Problem 1: ($\mathbf{1 7}$ points) Solve the following problems.
1.a) A reservation service employs three information operators who receive requests for information independently of one another, each according to Poisson Process with a rate of 1 per minute. What is the probability that during a given 1 -minute period, no more than one of the three operators receives at least two requests? (4 points)
1.b) There is a $50-50$ chance that the queen carries the gene of hemophilia. If she is a carrier, then each prince has a $50-50$ chance of having hemophilia independently. If the queen is not a carrier, the prince will not have the disease. Suppose the queen has had two princes without the disease. What is the probability the queen is a carrier? (4 points)
1.c) The probability that a person living in a city owns a dog is 0.3 . Find the probability that the sixth person randomly interviewed in the city is the second one to own a dog. (2 points)
1.d) Let Y be a random variable with a moment generating function of $e^{4 t} /\left(4-t^{2}\right)$, where $|t|<2$. Find $E\left(Y^{2}\right)$. (4 points)
1.e) Derive the moment-generating function of the exponential distribution with a mean of θ. (3 points)

Problem 2: (19 points)

Consider two random variables X and Y whose joint probability density function is given by

$$
f(x, y)=\left\{\begin{array}{cr}
8 x y & \text { for } 0<x<y<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

2.a) Find the probability density function of X. (2 points)
2.b) $P(X>1 / 3 \mid X \geq 1 / 2)$. (2 points)
2.c) Define $U=X-2 Y$. Assume that $E(Y)=4 / 5$ and $E\left(Y^{2}\right)=2 / 3$. Find the variance of U. (8 points)
2.d) Derive the conditional mean of Y given $X=x$, where $0<x<1$. (3 points)
2.e) Define $V=X / Y$. Find the cumulative distribution function of V. (4 points)

Problem 3: (9 points)

Consider two random variables X and Y whose joint probability mass function is given by

		x	
	1	2	
y	0	$1 / 10$	$3 / 20$
	1	$2 / 10$	$3 / 10$
	2	$1 / 10$	$3 / 20$

3.a) Define $U=X^{2}$. Find the moment generating function of U. (3 points)
3.b) Find the conditional mean of U given $Y=1$. (3 points)
3.c) Are the variables U and Y independent? Justify your answer. (3 points)

Problem 4: (6 points, 1 point/each)
Determine if each of the following statements is true or false. Answer True or False.
_ 4.a) The exponential and chi-squared distributions are special cases of the gamma distribution.
__ 4.b) A negative binomial random can be expressed as the sum of independent and identical Bernoulli random variables.
_ 4.c) Let X be the number of trials until a success in a sequence of independent and identical Bernoulli trials. Then X has a geometric distribution.
_ 4.d) The sum of correlated normally distributed random variables is not normally distributed.
_ 4.e) Chebyshev's theorem or inequality is derived under the assumption of a mound-shaped distribution.
_ 4.f) Let σ_{X}, σ_{Y}, and σ_{X+Y} be the standard deviations of the random variables X, Y, and $X+Y$, respectively. Then σ_{X+Y} is less than or equal to the sum of σ_{X} and $\sigma_{Y,}$

Part B: STA 684

This part consists of four problems, each with subparts. It has a possible total of $\mathbf{8 0}$ points.

Problem 1: (10 points)

1.a) (5 points) If $X_{n} \xrightarrow{D} X$ and $\frac{Y_{n}}{X_{n}} \xrightarrow{P} 0$, then show that $Y_{n} \xrightarrow{P} 0$.
1.b) (5 points) Consider X_{1}, \ldots, X_{n} to be a random sample such that $E\left(X_{1}\right)=0$ and $V\left(X_{1}\right)=1$ and consider the statistic $Y_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ such that Y_{n} converges in distribution to Y. Find $P(Y>1)$.

Problem 2: (30 points)

Let X_{1}, \ldots, X_{n} be a random sample from a population with the following density:

$$
f(x)=\frac{1}{\gamma(1+x)^{\frac{1}{\gamma}+1}} ; x \geq 0 ; \gamma>0
$$

2.a) (5 points) Find $\hat{\gamma}$, the MLE of γ.
2.b) (5 points) Show that $\hat{\gamma}$ is a consistent estimator of γ.
2.c) (10 points) Find the limiting distribution of $\hat{\gamma}$.

We would like to conduct the following test of hypothesis $\mathrm{H}_{0}: \gamma=1$ vs. $\mathrm{H}_{1}: \gamma>1$ at α level of significance. Use the sampling distribution in (2.c) to
2.d) (5 points) obtain the test's rejection region;
2.e) (5 points) obtain the test's power function.

Problem 3: (20 points)

The number of accidents per month at a certain intersection in San Diego is assumed to follow a Poisson distribution with a rate of λ accidents per month. Let X_{1}, \ldots, X_{n} be the numbers of monthly accidents observed over a period of n consecutive months. Due to the almost stable weather conditions of San Diego, the $X_{i}{ }^{\prime}$'s can be assumed to be independent and identically distributed.
3.a) (5 points) Find a sufficient statistic for the assumed distribution model. Is it complete? Justify your answer.

We'd like to estimate θ, the probability that next month will be accident-free, i.e., $\theta=\mathrm{P}(X=0)$. Since the MLE of θ is biased, we consider the unbiased but inefficient estimator:

$$
\hat{\theta}=\mathbf{1}\left(X_{1}=0\right)= \begin{cases}1, & X_{1}=0 \\ 0, & \text { Otherwise }\end{cases}
$$

3.b) (10 points) Use some appropriate technique to obtain an improved estimator of θ out of $\hat{\theta}$.
3.c) (5 points) Is the estimator you obtained in (3.b) an MVUE? Justify your answer.

Problem 4: (20 points)

A random sample of size n is selected from a population with pdf:

$$
f(x)=\frac{2}{\theta}\left(\frac{x}{\theta}\right) ; 0 \leq x \leq \theta
$$

4.a) (5 points) Find $\hat{\theta}$, the MLE of θ. Justify your answer.
4.b) (10 points) Find the sampling distribution of the MLE of θ.
4.c) (5 points) Is $\hat{\theta}$ an unbiased estimator of θ. Justify your answer.

[^0]: Signature

